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gas in a box stellar system

molecules,m ~ 10%* g stars,m ~ 1033 g
N~ 0% N ~ 102-10° (star clusters),
~10°-10'2 (galaxies)
short-range forces long-range forces (gravity)
confined in a box confined by self-gravity

mean free path << system size | mean free path >> system size
(Knudsen number Kn << [) (Kn >> 1)
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Equations of motion for N-body system are

r.
r;, = E Gm,; A
|r2—r3

Then

1 &
__E ol
r;- G 1
I= E mzv + E Gm;m; |r =y |3 E miv; +§:|rm_7:;|

17#] 1>]
=2K+W=K+FE

K = kinetic energy
W = potential energy

So in a steady state
E = —K. E = K+W = total energy

If isothermal K = %N kT so heat capacity is

dF 3
C=9r="2
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oo | e self-gravitating gas of
[ mass M in a rigid
0.4 spherical container of
[ radius R
o 02 B * solutions parametrized
%0 5 by density contrast Q =
R - P(0)/p(R)
A * heat capacity at constant
[ volume C = dE/T =
-0.2 C Q=32.1 SIOPe
~0.4 Q=709 ]
0.3 | oﬁ4 — 015 — 016 — oﬁ'? - Antonov (1962)
kTR/(GM) Lynden-Bell & Wood (1968)
temperature Thirring (1970)
Katz (1978)
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0.6 -
0.4 —
c >
() =3 0
-0.2

-04 - Q=709

1 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1
0.3 04 0.5 0.6 0.7
Toin kTR/(GM)
temperature
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* place box in contact
with a heat bath at
temperature T and
slowly reduce T

* below Tmin there is no
equilibrium state

* systems between
Q=32.1 and Q=709 are
unstable equilibria
(entropy is a saddle
point, not a maximum)



0.6 [
0.4 [
c >
()] S o T 2
—0.2 | Q=32.1
Rmax -
-0.4 [ Q=709
1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1
0.3 0.4 0.5 0.6 0.7
KTR/(GM)
temperature
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* insulate box and
suddenly expand its
radius R

* E is conserved so if E<0
ER/(GM?) becomes
more negative

* for R > Rmax there is no
equilibrium state

e for Q > 709 all
equilibrium states are
unstable



e isolated self-gravitating systems have negative heat capacity

* there is no thermodynamic equilibrium state for self-
gravitating systems unless they are enclosed in a sufficiently
small box

* there is no “heat death” of the Universe
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* there is no thermodynamic equilibrium state for self-
gravitating systems unless they are enclosed in a sufficiently
small box
= stellar systems cannot survive much longer than the
equipartition or relaxation time due to gravitational
encounters between stars

e for a spherical system of N stars with crossing time tcross

trelax == 0.1 teross N/|Og A\
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|0 parsecs

the solar neighborhood:

teross = 108 yr : |
trelax = IOI3 )’I’ s tll 1Ma

HR4
HR45
Py .
1 : HAS
}
Galactic Centve
2 -
.T.
.t
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e stars in the solar neighborhood exhibit “random” velocities of 5-50 km/s in
addition to common rotational velocity of ~220 km/s

* more massive stars have smaller random velocities

* rms velocity vs mass is roughly consistent with equipartition

e timescale required to reach equipartition due to gravitational encounters
between stars is ~10'3 yr = universe must be at least this old

TaBrLe [.—KquirarriTiION oF ENERCY IN STELLAR MOTIONS.

o s
Mean Mass, Mean \éelocity, Mean Energy, | Corresponding

Type of Star. 3+ MCe, Temperature,

M.

Degrees.
x 1046 1-0 x 1082

Spectral type B3 . 14-8 x 10°

., B85 . 15-8

s A0 24-5

’ A2 27-2

s Ab 29-9

' Fo 35-9

’ 5 47-9

s G0 64-6

s G5 77-6

” KO
K5 .
MO .

bt DO DD 0D b bt bt e et ©
~JeI =0 O~IC~100 00

|3
]
|
|
|
|
|
|
|
;
|

b4

M RO S R LY

RO BT OO S —e

SO Lo A A B U5 0O 00 02 00 =
(@1 WIVN G R Wan i I SR JEN e Re~Riw]
SO o3 =1 =1 Qv Tt W Ut
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e stars in the Milky Way disk exhibit “random” velocities of 5-50 km/s in
addition to common rotational velocity of ~220 km/s

* more massive stars had smaller random velocities, consistent with
equipartition

e timescale required to reach equipartition due to gravitational encounters
between stars is ~10'3 yr = universe must be at least this old

* in fact random velocities arise from gravitational interactions with
interstellar clouds and spiral arms, and more massive stars have smaller
velocities because they are younger

TaBrLe [.—KquirarriTiION oF ENERCY IN STELLAR MOTIONS.

Mean Mass, Mean \éelocity, Mean Energy, | Corresponding

Type of Star. 3 McCe, Temperature.

M.

Degrees.
x 1046 1-0 x 1082

Spectral type B3 . 14-8 x 10°
2] B85 . 15-8
L] AO . 24‘5
24 A2 27'2
s Ab 29-9
. Fo 35-9
’ 5 47-9
s G0 64-6
s Gb 776
” KO
' K5 .
MO .

bt DO DD 0D b bt bt e et ©
T oI =0 O =IO 300 0

;
i
!
!
i

M IO NP S PP

RO BT OO S —e

SO Lo A e i U5 0O L0 08 0O e
(@1 WIVN G R Wan i I SR JEN e Re~Riw]
SO o3 =1 =1 Qv Tt W Ut
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giant galaxies:.
N = [0

teross = alllN AT '.
trelax == al0S yr
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giant galaxies:

teross = 108 yr
trelax = 10" yr

* the distribution of stars is similar, apart from scale, in all galaxies
* the distribution of stellar velocities is close to Maxwellian
* how is this achieved if the relaxation time is much longer than the age!

Answer:
* large-scale fluctuations in the mean gravitational field during collapse of

the galaxy drive the distribution of stars towards an (approximately)
universal form (“violent relaxation”, )
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z=11.9

§ . W N T
o = : a' "‘j
800 x 600 physical kpc "
oyttt N‘ A
. . ."‘“ -.-"
ol :
)

Diemand, Kuhlen, Madau 2006
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density profiles of dark-matter halos in

= T T T T T T T T T simulations are well fit over > 3 orders
N -2 NFW — of magnitude in radius, > 5 orders of
i : ] magnitude in mass, and a wide variety of
& -3 - = initial conditions by simple empirical
- - . formulae
- -4 5 B e.g., Navarro-Frenk-White (NFW)
S - ] profile
— o B 23
Q B 7 = _—
PR s . plr) POrlr + a)2
o -6 Galaxies ]

~ —-- Clusters ] suggests that there is some simple

S NIV AN NI physics that determines the density

0 1 2 3 profile and other halo properties
log r (kpc)

Navarro et al. (2004)
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density profiles of dark-matter halos in
Spectroscopic LRGs simulations are well fit over > 3 orders
S - of magnitude in radius, > 5 orders of
E magnitude in mass, and a wide variety of
: initial conditions by simple empirical

100 |- -

= formulae

& e.g., Navarro-Frenk-White (NFW)
Z | profile

g : a’

p(r) = po m

_______-223zM > -226

M, > -22.3 T
|

|
l } : suggests that there is some simple
physics that determines the density
profile and other halo properties

1 1 1 P S S R T
0.1 1

R [h-'Mpc]

Mandelbaum et al. (2008)
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In most dark matter models the phase-space density f(x,v) satisfies the colli-
sionless Boltzmann equation (a.k.a. Vlasov equation, Liouville equation, conti-
nuity equation in phase space)

g+ .Of_(r)(I).(')f_
ot Vax ox Ov

0

and the Poisson equation
V20 = 47rG’/dvf(x,v,t).

The natural first approach is to assume that violent relaxation leads to a
final state that maximizes the entropy

S=- / dxdv f log f + constant

at fixed mass and energy.
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The primary feature of entropy in statistical mechanics is that it

satisfies Boltzmann’s H theorem, i.e. molecular collisions imply that
% <0 where H=-5= /dxdvflogf.

Relaxation is a Markov process in phase space defined by the

probability pji that a particle in cell i transitions to cell j after time

At. If all cells have the same size then time-reversibility implies p;i =

pij. Then

dH
dt

and C(f) is any convex function, C”(f) > 0, e.g.,

C(f)=flogf, C(f)=1? C(f)=—logf, etc.

<0 where H = / dxdvC(f)
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Maximum-entropy arguments in violent relaxation do not lead to a
unique final state. An initial phase-space distribution f(x,v) can only
evolve into a final one f'(x,v) if all possible H-functions are smaller

for f' than for f.
A simpler criterion:

/dxdv max|[f(x,v) — ¢,0] > /dxdv max[f’'(x,v) — $,0] for all >0

Dehnen (2005)

Unfortunately for cold dark matter the left side diverges...

= some physics other than maximum entropy is needed to
understand violent relaxation
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the nuclear star cluster at
the Galactic center:

N =~ 10’ stars plus a black

. : . 6
o ' , ~ hole of 4 x [0° Mg
e teross = | to 10% yr
trelax = 107 yr
' '. » ' . - ‘
o B
. 5 “-
10” ' . t
(0.4 pc) i ;
| »
VLT: ) - L’(3.8um)
VLA:

Genzel (2015)
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The stellar disk(s) in the Galactic center

| pc =25”

e ~ |00 massive young stars found in the
central parsec

® age 6 Myr;implied star-formation rate is so
high that it must be episodic

* line-of-sight velocities measured by Doppler
shift and angular velocities measured by
astrometry (five of six phase-space
coordinates)

* velocity vectors lie close to a plane, implying
that many of the stars are in a disk or
perhaps 2 disks (Levin & Beloborodov
2003)

Bartko et al. (2009) blue = clockwise rotation (61 stars)
red = counter-clockwise rotation (29 stars)
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e ~|00 massive stars in central
0.5 pc of the Milky Way

* plots show distribution of
orbit normals

- clockwise disk:
» warped (best-fit normals in inner and
outer image differ by 64°)
» disk is less well-formed at larger radii
- counter-clockwise disk:
- weaker evidence
* localized between 0.1 and 0.3 pc

*disks are embedded in a spherical cluster
Bartko et al. (2009) of old, fainter stars with M(0.1 pc) ~ I x10°
Mo compared to Me = 4%x10° Mo
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Resonant relaxation

+ inside ~0.5 pc gravitational field is dominated
by the bIaCk hOIe (Mstars < |05 M@, M. 9t 4)( |06
Mo) and therefore is nearly spherical

- on timescales longer than the apsidal
precession period each stellar orbit can be
by

thought of as a disk or annulus

SR assa At R BT v 5= & R ;_'.'. ch , P Y
TR G = ) 1 | 1C ¢ 11 E(@ )+ (M = |
i san 15 9 1T QUTO L ‘;"f‘ -dlU LU | Cic
g :

— s

Ag
I""
- each disk exerts a torque on all other disks ‘ﬁ'ﬁ\
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Resonant relaxation

Interaction energy between stars i and j is mm/f(a;a,e,e,,cos ;) where ; is

the angle between the orbit normals /‘ \
eccentricities

masses
semi-major axes

Toy model:

Simplify this drastically by assuming equal masses, equal semi-major axes, circular
orbits, and neglecting all harmonics other than quadrupole

Resulting interaction energy between two stars i and j is just

o C .cos2 ”ii.
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Resonant :
i Interaction energy between
I"e|aX8.tIOn two stars is

H=-Ccos?p

where M is the angle
between the two orbit
normals

e 800 stars

* each point represents tip
of orbit normal

* orbit normals initially in
northern hemisphere are
yellow, south is red

animation by B. Kocsis
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* integrate orbit-averaged equations of
motion

* yellow = disk stars, blue-red = stars in
spherical cluster, colored by increasing
radius

e direction and radius of each point

represents direction of angular-
momentum vector and semi-major axis
of star

e 8192 stars

e each point represents tip of orbit
normal

animation by B. Kocsis
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0.00 Myr
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Statistical mechanics of planetary systems

There are many bad examples of attempts to explain the spacing and other properties
of planetary orbits from first principles &

Nevertheless there are reasons to try again:

* NASA’s Kepler spacecraft has recently provided almost 5000 planet candidates, with orbital
periods and estimates of masses, inclinations, eccentricities, etc. Of these 1500 are in multi-
planet systems (N<6)

* long-term N-body integrations can routinely follow the evolution of hundreds of systems for
|08 years (a few percent of lifetime)

* there are hints of interesting behavior from studies of the stability of the solar system:

- the orbits of all of the planets in the solar system are chaotic, with Liapunov (e-folding) times
of ~107 yr (Sussman & Wisdom 1988, 1992, Laskar 1989, Hayes 2008)

- the outer solar system is “full” in the sense that no stable orbits remain between Jupiter and
Neptune (Holman 1997)

- there is a 1% chance that Mercury will be lost from the solar system before the end of the
Sun’s life in ~ 7 Gyr
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There are many bad examples of attempts to explain the spacing and other properties
of planetary orbits from first principles &

Nevertheless there are reasons to try again:
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periods and estimates of masses, inclinations, eccentricities, €
planet systems (N<6)

* long-term N-body integrations can routinely follow the evol
|08 years (a few percent of lifetime)

e there are hints of interesting behavior from studies of the st

- the orbits of all of the planets in the solar system are chao
of ~107 yr (Sussman & Wisdom 1988, 1992, Laskar 1989, H

- the outer solar system is “full” in the sense that no stable ¢
Neptune (Holman 1997)

- there is a 1% chance that Mercury will be lost from the sol
Sun’s life in ~ 7 Gyr

Fig. 37 —KEPLER’S ANA'LOGY“IOF raE Five SoLms AND THE FIve
'V ORLDS.
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Sun’s life in ~ 7 Gyr

Tuesday, February 24, 15



eccentricity of Mercury for 2500 nearby initial conditions

2,000 3,000 4,000
Time (Myr
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Statistical mechanics of planetary systems

* a plausible hypothesis is that planetary systems may evolve throughout
their lifetimes, ejecting unstable planets and gradually settling into more
and more stable states

¢ some consequences:

- extends the planet-formation process from Myr to Gyr timescales

- properties of planetary systems are determined in part by simple physics
(mechanics) rather than complicated physics (dust sticking, MHD instabilities,
etc.)

- many interstellar planets that should be detectable by gravitational lensing
surveys
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Statistical mechanics of planetary systems

The range of strong interactions from a planet of mass m orbiting a star of mass M in
a circular orbit of radius a is the Hill radius

N

r=a( 7))
3M

Numerical integrations show that planets of mass m, m” are stable for N orbital

periods if

, m+m/\ /3
" —a| > k(N)rg where rg=a :

3M

typically k(10%) =~ 9

c

Generalize to eccentric orbits: pericenter
of outer orbit and apocenter of inner orbit
must be separated by at least k Hill radii

n
S
]
o
>
>
-
o
o

Smith & Lissauer (2009) B (mutual Hill radii)
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Statistical mechanics of planetary systems

Ansatz: planetary systems fill uniformly the region of phase space allowed by stability
(~ ergodic hypothesis)
Leads to an N-planet distribution function

N

p(ai,el,...,an,en) H da;de; H(ai41 — a; — a(e;v1 +e;) — krg)
il

where H(-) is the step function, k ~ 9, and rg = @(m; + m4+1)Y/3/(8M)1/3.

For comparison the distribution function for a one-dimensional gas of hard rods of
length L (Tonks 1936) is

p(ai,... ocl_[da,Z (@i+1 —a; — L).

In both systems the partition function depends only on the filling factor

k<7’H> F= L

F=_ —H __ e
(@i41 — a5) (@i41 — a5)
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Statistical mechanics of planetary systems

N-planet distribution function

N
p(ai,e1,...,an,en) H da;de? H(a;+1 — a; — aeip1 +€;) — krp)
=i

where H(-) is the step function, & ~ 9, and 75 = a@(m; + m;41)"/3/(3M)/3.

For N>>1 this leads to eccentricity distribution

4e 1-F
p(e) = oy oxp(=2e/(e)), (€)= goray-

and distribution of semi-major axis differences

p(Aa) = D(z) = 6e™% — e ?*(z® + 3z% + 6z + 6)

=” [Aaa?elfm]
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e.g., N-body simulations of planet growth by Hansen & Murray (201 3)

60 T T T T T T T T T T T T T T T

(o))
o

N
o

N
W
o

[AN)
o

o

—_
o
o\|\l\._§|:,_|llllllll|||||||||||
I i [ I

0.1 0.2 0.3 0.4

eccentricity (az-ai-krn)/a

theoretical models use F = 0.3 (derived from planet masses), and mean separation <Aa>
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N-body simulations (Hansen & Murray 2013) Kepler planets (Fabrycky et al. 2014)

60 | I — | I — | I — T T | I — 60 T T T T T T T T T T T T T

] 40 _

N 20 -

0 0.2 0.4 0.6 0.8 1

(a2-ai-krn)/a (a2-ai-krn)/a
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