Statistical mechanics of selfgravitating N-body systems

gas in a box	stellar system
molecules, $\mathrm{m} \sim 10^{-24} \mathrm{~g}$	stars, $\mathrm{m} \sim 10^{33} \mathrm{~g}$
$\mathrm{N} \sim 10^{23}$	$\begin{aligned} \mathrm{N} & \sim 10^{2}-10^{5} \text { (star clusters) }, \\ & \sim 10^{5}-10^{12} \text { (galaxies) } \end{aligned}$
short-range forces	long-range forces (gravity)
confined in a box	confined by self-gravity
mean free path << system size (Knudsen number Kn << I)	mean free path >> system size $(K n \gg I)$

Equations of motion for N -body system are

$$
\ddot{\mathbf{r}}_{i}=\sum_{j=1}^{N} G m_{j} \frac{\mathbf{r}_{j}-\mathbf{r}_{i}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{3}}
$$

Then

$$
\begin{aligned}
& \qquad \begin{aligned}
I & =\frac{1}{2} \sum_{i=1}^{N} m_{i} r_{i}^{2}, \\
& =2 K+W=K+E
\end{aligned} \\
& \qquad \begin{array}{ll}
\ddot{I} & =\sum_{i=1}^{N} m_{i} v_{i}^{2}+\sum_{i \neq j} G m_{i} m_{j} \frac{\mathbf{r}_{i} \cdot\left(\mathbf{r}_{j}-\mathbf{r}_{i}\right)}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|^{3}}=\sum_{i=1}^{N} m_{i} v_{i}^{2}+\sum_{i>j} \frac{G m_{i} m_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|} \\
\text { So in a steady state } & E=-K .
\end{array} \begin{array}{l}
\begin{array}{l}
\mathrm{K}=\text { kinetic energy } \\
\mathrm{W}=\text { potential energy } \\
\mathrm{E}=\mathrm{K}+\mathrm{W}=\text { total energy }
\end{array} \\
\qquad
\end{array}
\end{aligned}
$$

If isothermal $K=\frac{3}{2} N k T$ so heat capacity is

$$
C=\frac{d E}{d T}=-\frac{3}{2} N k
$$

- self-gravitating gas of mass M in a rigid spherical container of radius R
- solutions parametrized by density contrast $\mathrm{Q}=$ $\rho(0) / \rho(R)$
- heat capacity at constant volume $C=\mathrm{dE} / \mathrm{dT}=$ slope

Antonov (1962)
Lynden-Bell \& Wood (1968)
Thirring (1970)
Katz (1978)

- place box in contact with a heat bath at temperature T and slowly reduce T
- below $T_{\text {min }}$ there is no equilibrium state
- systems between $\mathrm{Q}=32.1$ and $\mathrm{Q}=709$ are unstable equilibria (entropy is a saddle point, not a maximum)

- insulate box and suddenly expand its radius R
- E is conserved so if $\mathrm{E}<0$ ER/(GM ${ }^{2}$) becomes more negative
- for $R>R_{\text {max }}$ there is no equilibrium state
- for Q > 709 all equilibrium states are unstable
- isolated self-gravitating systems have negative heat capacity
- there is no thermodynamic equilibrium state for selfgravitating systems unless they are enclosed in a sufficiently small box
- there is no "heat death" of the Universe

- there is no thermodynamic equilibrium state for selfgravitating systems unless they are enclosed in a sufficiently small box
\Rightarrow stellar systems cannot survive much longer than the equipartition or relaxation time due to gravitational encounters between stars
- for a spherical system of N stars with crossing time $\mathrm{t}_{\text {cross }}$

$$
\mathrm{t}_{\text {relax }} \simeq 0.1 \mathrm{t}_{\text {cross }} \mathrm{N} / \log \mathrm{N}
$$

- stars in the solar neighborhood exhibit "random" velocities of $5-50 \mathrm{~km} / \mathrm{s}$ in addition to common rotational velocity of $\sim 220 \mathrm{~km} / \mathrm{s}$
- more massive stars have smaller random velocities
- rms velocity vs mass is roughly consistent with equipartition
- timescale required to reach equipartition due to gravitational encounters between stars is $\sim 10^{13} \mathrm{yr} \Rightarrow$ universe must be at least this old

Type of Star.		$\begin{aligned} & \text { Mean Mass, } \\ & \text { M. } \end{aligned}$	Mean Velocity, C.	Mean Energy, $\frac{1}{2} M C^{2}$.	Corresponding Temperature.
Spectral type		$19 \cdot 8 \times 10^{33}$	14.8×10^{5}	1.95×10^{46}	Degrees. $1 \cdot 0 \times 10^{62}$
	B8.5	12.9	15.8	1.62×10	$0 \cdot 8$
		$12 \cdot 1$	24.5	$3 \cdot 63$	1.8
	A2	$10 \cdot 0$	$27 \cdot 2$	$3 \cdot 72$	1.8
	A5	$8 \cdot 0$	$29 \cdot 9$	3.55	1.7
	F0	$5 \cdot 0$	$35 \cdot 9$	$3 \cdot 24$	1.6
	F5	$3 \cdot 1$	$47 \cdot 9$	$3 \cdot 55$	1.7
	G0	$2 \cdot 0$	$64 \cdot 6$	$4 \cdot 07$	$2 \cdot 0$
	G5	1.5	$77 \cdot 6$	$4 \cdot 57$	$2 \cdot 2$
	K0	1.4	$79 \cdot 4$	$4 \cdot 27$	$2 \cdot 1$
	K5	1.2 1.2	$74 \cdot 1$ $77 \cdot 6$	$3 \cdot 39$ $3 \cdot 55$	1.7 1.7

- stars in the Milky Way disk exhibit "random" velocities of $5-50 \mathrm{~km} / \mathrm{s}$ in addition to common rotational velocity of $\sim 220 \mathrm{~km} / \mathrm{s}$
- more massive stars had smaller random velocities, consistent with equipartition
- timescale required to reach equipartition due to gravitational encounters between stars is $\sim 10^{13} \mathrm{yr} \Rightarrow$ universe must be at least this old
- in fact random velocities arise from gravitational interactions with interstellar clouds and spiral arms, and more massive stars have smaller velocities because they are younger

Table I.--Equipartimion of Energy in Stellar Motions.

Type of Star.	$\begin{gathered} \text { Mean Mass, } \\ M . \end{gathered}$	Mean Velocity, C.	$\begin{aligned} & \text { Mean Energy, } \\ & \frac{1}{2} M C^{\mathrm{a}} \text {. } \end{aligned}$	Corresponding Temperature.
Spectral type $B 3$.	19.8×10^{33}	14.8×10^{5}	1.95×10^{46}	Degrees. $1 \cdot 0 \times 10^{62}$
,, B8.5.	$12 \cdot 9$	$15 \cdot 8$	1.62	0.8
," $A 0$.	$12 \cdot 1$	24-5	$3 \cdot 63$	1.8
" ${ }^{\prime}$.	$10 \cdot 0$	$27 \cdot 2$	$3 \cdot 72$	$1 \cdot 8$
,, A5.	$8 \cdot 0$	$29 \cdot 9$	$3 \cdot 55$	$1 \cdot 7$
", Fo.	$5 \cdot 0$	$35 \cdot 9$	$3 \cdot 24$	$1 \cdot 6$
," ${ }^{\prime}$	$3 \cdot 1$	$47 \cdot 9$	$3 \cdot 55$	$1 \cdot 7$
,, GO	$2 \cdot 0$	$64 \cdot 6$	$4 \cdot 07$	$2 \cdot 0$
", G5	1.5	$77 \cdot 6$	$4 \cdot 57$	$2 \cdot 2$
," K0	$1 \cdot 4$	$79 \cdot 4$	$4 \cdot 27$	$2 \cdot 1$
,, K5	$1 \cdot 2$	$74 \cdot 1$	$3 \cdot 39$	$1 \cdot 7$
,, M0.	$1 \cdot 2$	$77 \cdot 6$	$3 \cdot 55$	$1 \cdot 7$

giant galaxies:
$N \simeq 10^{11}$
$\mathrm{t}_{\text {cross }} \simeq 10^{8} \mathrm{yr}$ $\mathrm{t}_{\text {relax }} \simeq 10^{19} \mathrm{yr}$
giant galaxies:

$$
\begin{aligned}
& N \simeq 10^{11} \\
& t_{\text {cross }} \simeq 10^{8} \mathrm{yr} \\
& \mathrm{t}_{\text {relax }} \simeq 10^{19} \mathrm{yr}
\end{aligned}
$$

z=11.9

800×600 physical kpc

Diemand, Kuhlen, Madau 2006

Navarro et al. (2004)

- density profiles of dark-matter halos in simulations are well fit over > 3 orders of magnitude in radius, >5 orders of magnitude in mass, and a wide variety of initial conditions by simple empirical formulae
- e.g., Navarro-Frenk-White (NFW) profile

$$
\rho(r)=\rho_{0} \frac{a^{3}}{r(r+a)^{2}}
$$

- suggests that there is some simple physics that determines the density profile and other halo properties

Mandelbaum et al. (2008)

- density profiles of dark-matter halos in simulations are well fit over > 3 orders of magnitude in radius, >5 orders of magnitude in mass, and a wide variety of initial conditions by simple empirical formulae
- e.g., Navarro-Frenk-White (NFW) profile

$$
\rho(r)=\rho_{0} \frac{a^{3}}{r(r+a)^{2}}
$$

- suggests that there is some simple physics that determines the density profile and other halo properties

Mandelbaum et al. (2008)

- density profiles of dark-matter halos in simulations are well fit over > 3 orders of magnitude in radius, >5 orders of magnitude in mass, and a wide variety of initial conditions by simple empirical formulae
- e.g., Navarro-Frenk-White (NFW) profile

$$
\rho(r)=\rho_{0} \frac{a^{3}}{r(r+a)^{2}}
$$

- suggests that there is some simple physics that determines the density profile and other halo properties

Lynden-Bell (1967)
Binney (1982)
Madsen (1987)
Shu (1987)
Stiavelli \& Bertin (1987)
Williams \& Hjorth (2010)

Dalal et al. (20I0)
Pontzen \& Governato (20|3)
Beraldo e Silva et al. (20|4)
Alard (2014)

In most dark matter models the phase-space density $f(\mathbf{x}, \mathbf{v})$ satisfies the collisionless Boltzmann equation (a.k.a. Vlasov equation, Liouville equation, continuity equation in phase space)

$$
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}}-\frac{\partial \Phi}{\partial \mathbf{x}} \cdot \frac{\partial f}{\partial \mathbf{v}}=0
$$

and the Poisson equation

$$
\nabla^{2} \Phi=4 \pi G \int d \mathbf{v} f(\mathbf{x}, \mathbf{v}, t)
$$

The natural first approach is to assume that violent relaxation leads to a final state that maximizes the entropy

$$
S=-\int d \mathbf{x} d \mathbf{v} f \log f+\text { constant }
$$

at fixed mass and energy.

In most dark matter models the phase-space density $f(\mathbf{x}, \mathbf{v})$ satisfies the collisionless Boltzmann equation (a.k.a. Vlasov equation, Liouville equation, continuity equation in phase space)

$$
\frac{\partial f}{\partial t}+\mathbf{v} \cdot \frac{\partial f}{\partial \mathbf{x}}-\frac{\partial \Phi}{\partial \mathbf{x}} \cdot \frac{\partial f}{\partial \mathbf{v}}=0
$$

and the Poisson equation

$$
\nabla^{2} \Phi=4 \pi G \int d \mathbf{v} f(\mathbf{x}, \mathbf{v}, t)
$$

The natural first approach is to assume that violent relaxation leads to a final state that maximizes the entropy

$$
S=-\int d \mathbf{x} d \mathbf{v} f \log f+\text { constant }
$$

at fixed mass and energy.

The primary feature of entropy in statistical mechanics is that it satisfies Boltzmann's H theorem, i.e. molecular collisions imply that

$$
\frac{d H}{d t} \leq 0 \text { where } H=-S=\int d \mathbf{x} d \mathbf{v} f \log f .
$$

Relaxation is a Markov process in phase space defined by the probability Pij that a particle in cell i transitions to cell j after time $\Delta \mathrm{t}$. If all cells have the same size then time-reversibility implies $\mathrm{pii}_{\mathrm{i}}=$ Pij. Then

$$
\frac{d H}{d t} \leq 0 \quad \text { where } \quad H=\int d \mathbf{x} d \mathbf{v} C(f)
$$

and $C(f)$ is any convex function, $C^{\prime \prime}(f) \geq 0$, e.g.,

$$
C(f)=f \log f, \quad C(f)=f^{2}, \quad C(f)=-\log f, \text { etc. }
$$

Maximum-entropy arguments in violent relaxation do not lead to a unique final state. An initial phase-space distribution $f(x, v)$ can only evolve into a final one $f^{\prime}(x, v)$ if all possible H-functions are smaller for f^{\prime} than for f.
A simpler criterion:

$$
\int d \mathbf{x} d \mathbf{v} \max [f(\mathbf{x}, \mathbf{v})-\phi, 0] \geq \int d \mathbf{x} d \mathbf{v} \max \left[f^{\prime}(\mathbf{x}, \mathbf{v})-\phi, 0\right] \quad \text { for all } \phi>0
$$

Unfortunately for cold dark matter the left side diverges...
\Rightarrow some physics other than maximum entropy is needed to understand violent relaxation
the nuclear star cluster at the Galactic center:
$\mathrm{N} \simeq 10^{5}$ stars plus a black hole of $4 \times 10^{6} \mathrm{M}_{\odot}$ $\mathrm{t}_{\text {cross }} \simeq I$ to $10^{4} \mathrm{yr}$ $t_{\text {relax }} \simeq 10^{9} \mathrm{yr}$

The stellar disk(s) in the Galactic center

I pc = 25"

- ~ 100 massive young stars found in the central parsec
- age 6 Myr; implied star-formation rate is so high that it must be episodic
- line-of-sight velocities measured by Doppler shift and angular velocities measured by astrometry (five of six phase-space coordinates)
- velocity vectors lie close to a plane, implying that many of the stars are in a disk or perhaps 2 disks (Levin \& Beloborodov 2003)

Bartko et al. (2009)
blue $=$ clockwise rotation (6I stars)
red $=$ counter-clockwise rotation (29 stars)

Bartko et al. (2009)

- clockwise disk:
- warped (best-fit normals in inner and outer image differ by 64°)
- disk is less well-formed at larger radii - counter-clockwise disk:
- weaker evidence
- localized between 0.1 and 0.3 pc
-disks are embedded in a spherical cluster of old, fainter stars with $M(0.1 \mathrm{pc}) \sim 1 \times 10^{5}$ M_{\odot} compared to $M_{\bullet}=4 \times 10^{6} M_{\odot}$

Resonant relaxation

- inside $\sim 0.5 \mathrm{pc}$ gravitational field is dominated by the black hole ($M_{\text {stars }}<10^{5} M_{\odot}, M_{\bullet} \sim 4 \times 10^{6}$ M_{\circ}) and therefore is nearly spherical
- on timescales longer than the apsidal precession period each stellar orbit can be thought of as a disk or annulus
- each disk exerts a torque on all other disks
- mutual torques can lead to relaxation of orbit normals or angular momenta
- energy (semi-major axis) and scalar angular momentum (or eccentricity) of each orbit is

Rauch \& Tremaine (1996)

Resonant relaxation

Interaction energy between stars i and j is $\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}, \mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}, \cos \mu_{\mathrm{ij}}\right)$ where μ_{ij} is the angle between the orbit normals

Toy model:

Simplify this drastically by assuming equal masses, equal semi-major axes, circular orbits, and neglecting all harmonics other than quadrupole Resulting interaction energy between two stars i and j is just

$$
-C \cos ^{2} \mu_{\mathrm{ij}}
$$

where μ_{ij} is the angle between the two orbit normals $\boldsymbol{n}_{\mathrm{i}}$ and $\boldsymbol{n}_{\mathrm{j}}$

$$
\frac{d \hat{\mathbf{n}}_{i}}{d t}=-\frac{2 C}{\sqrt{G M_{\bullet} a}} \sum_{j \neq i}\left(\hat{\mathbf{n}}_{i} \cdot \hat{\mathbf{n}}_{j}\right) \hat{\mathbf{n}}_{i} \times \hat{\mathbf{n}}_{j}
$$

Resonant relaxation

Interaction energy between two stars is

$$
H=-C \cos ^{2} \mu
$$

where $\boldsymbol{\mu}$ is the angle
between the two orbit normals

- 800 stars
- each point represents tip of orbit normal
- orbit normals initially in northern hemisphere are yellow, south is red

- integrate orbit-averaged equations of motion
- yellow = disk stars, blue-red = stars in spherical cluster, colored by increasing radius
- direction and radius of each point represents direction of angularmomentum vector and semi-major axis of star
- 8192 stars
- each point represents tip of orbit normal

Statistical mechanics of planetary systems

There are many bad examples of attempts to explain the spacing and other properties of planetary orbits from first principles

Nevertheless there are reasons to try again:

- NASA's Kepler spacecraft has recently provided almost 5000 planet candidates, with orbital periods and estimates of masses, inclinations, eccentricities, etc. Of these 1500 are in multiplanet systems ($\mathrm{N} \leq 6$)
- long-term N-body integrations can routinely follow the evolution of hundreds of systems for 10^{8} years (a few percent of lifetime)
- there are hints of interesting behavior from studies of the stability of the solar system:
- the orbits of all of the planets in the solar system are chaotic, with Liapunov (e-folding) times of $\sim 10^{7}$ yr (Sussman \& Wisdom I988, I992, Laskar 1989, Hayes 2008)
- the outer solar system is "full" in the sense that no stable orbits remain between Jupiter and Neptune (Holman 1997)
- there is a I\% chance that Mercury will be lost from the solar system before the end of the Sun's life in ~ 7 Gyr

Statistical mechanics of planetary systems

There are many bad examples of attempts to explain the spacing and other properties of planetary orbits from first principles
Nevertheless there are reasons to try again:

- NASA's Kepler spacecraft has recently provided almost 5000 periods and estimates of masses, inclinations, eccentricities, ϵ planet systems ($\mathrm{N} \leq 6$)
- long-term N-body integrations can routinely follow the evol 10^{8} years (a few percent of lifetime)
- there are hints of interesting behavior from studies of the st:
- the orbits of all of the planets in the solar system are chao of $\sim 10^{7}$ yr (Sussman \& Wisdom 1988, 1992, Laskar 1989, H
- the outer solar system is "full" in the sense that no stable Neptune (Holman 1997)
- there is a I\% chance that Mercury will be lost from the so Sun's life in ~ 7 Gyr

Statistical mechanics of planetary systems

There are many bad examples of attempts to explain the spacing and other properties of planetary orbits from first principles

Nevertheless there are reasons to try again:

- NASA's Kepler spacecraft has recently provided almost 5000 planet candidates, with orbital periods and estimates of masses, inclinations, eccentricities, etc. Of these 1500 are in multiplanet systems ($\mathrm{N} \leq 6$)
- long-term N-body integrations can routinely follow the evolution of hundreds of systems for 10^{8} years (a few percent of lifetime)
- there are hints of interesting behavior from studies of the stability of the solar system:
- the orbits of all of the planets in the solar system are chaotic, with Liapunov (e-folding) times of $\sim 10^{7}$ yr (Sussman \& Wisdom I988, I992, Laskar 1989, Hayes 2008)
- the outer solar system is "full" in the sense that no stable orbits remain between Jupiter and Neptune (Holman 1997)
- there is a I\% chance that Mercury will be lost from the solar system before the end of the Sun's life in ~ 7 Gyr

eccentricity of Mercury for 2500 nearby initial conditions

Statistical mechanics of planetary systems

- a plausible hypothesis is that planetary systems may evolve throughout their lifetimes, ejecting unstable planets and gradually settling into more and more stable states
- some consequences:
- extends the planet-formation process from Myr to Gyr timescales
- properties of planetary systems are determined in part by simple physics (mechanics) rather than complicated physics (dust sticking, MHD instabilities, etc.)
- many interstellar planets that should be detectable by gravitational lensing surveys

Statistical mechanics of planetary systems

The range of strong interactions from a planet of mass m orbiting a star of mass M in a circular orbit of radius a is the Hill radius

$$
r_{H}=a\left(\frac{m}{3 M}\right)^{1 / 3}
$$

Numerical integrations show that planets of mass $\mathrm{m}, \mathrm{m}^{\prime}$ are stable for N orbital periods if
$\left|a^{\prime}-a\right|>k(N) r_{H} \quad$ where $\quad r_{H}=a\left(\frac{m+m^{\prime}}{3 M}\right)^{1 / 3}$.
typically $k\left(10^{9}\right) \simeq 9$
Generalize to eccentric orbits: pericenter of outer orbit and apocenter of inner orbit must be separated by at least k Hill radi

Statistical mechanics of planetary systems

Ansatz: planetary systems fill uniformly the region of phase space allowed by stability (~ ergodic hypothesis)
Leads to an N -planet distribution function

phase-space volume

$$
p\left(a_{1}, e_{1}, \ldots, a_{N}, e_{N}\right) \propto \prod_{i=1}^{N} \overbrace{d a_{i} d e_{i}^{2}} H \underbrace{\left(a_{i+1}-a_{i}-\bar{a}\left(e_{i+1}+e_{i}\right)-k r_{H}\right)}_{\substack{\text { step function }}}
$$

where $H(\cdot)$ is the step function, $k \simeq 9$, and $r_{H}=\bar{a}\left(m_{i}+m_{i+1}\right)^{1 / 3} /(3 M)^{1 / 3}$.

For comparison the distribution function for a one-dimensional gas of hard rods of length L (Tonks I936) is

$$
p\left(a_{1}, \ldots, a_{N}\right) \propto \prod_{i=1}^{N} d a_{i} H\left(a_{i+1}-a_{i}-L\right) .
$$

In both systems the partition function depends only on the filling factor

$$
F=\frac{k\left\langle r_{H}\right\rangle}{\left\langle a_{i+1}-a_{i}\right\rangle}, \quad F=\frac{L}{\left\langle a_{i+1}-a_{i}\right\rangle} .
$$

Statistical mechanics of planetary systems

N-planet distribution function

$$
p\left(a_{1}, e_{1}, \ldots, a_{N}, e_{N}\right) \propto \prod_{i=1}^{N} d a_{i} d e_{i}^{2} H\left(a_{i+1}-a_{i}-\bar{a}\left(e_{i+1}+e_{i}\right)-k r_{H}\right)
$$

where $H(\cdot)$ is the step function, $k \simeq 9$, and $r_{H}=\bar{a}\left(m_{i}+m_{i+1}\right)^{1 / 3} /(3 M)^{1 / 3}$.
For $\mathrm{N} \gg$ I this leads to eccentricity distribution

$$
p(e)=\frac{4 e}{\langle e\rangle^{2}} \exp (-2 e /\langle e\rangle), \quad\langle e\rangle=\frac{1-F}{3 \bar{a}\langle\Delta a\rangle} .
$$

and distribution of semi-major axis differences

$$
p(\Delta a)=\frac{8}{3 \bar{a}\langle e\rangle} D\left[\frac{\Delta a-k r_{H}}{\bar{a}\langle e\rangle}\right], \quad D(x)=6 e^{-x}-e^{-2 x}\left(x^{3}+3 x^{2}+6 x+6\right)
$$

e.g., N-body simulations of planet growth by Hansen \& Murray (2013)

theoretical models use $F=0.3$ (derived from planet masses), and mean separation $<\Delta \mathrm{a}>$

N-body simulations (Hansen \& Murray 2013)
Kepler planets (Fabrycky et al. 2014)

