
Unsolved problems in the 
Statistical mechanics of self-
gravitating N-body systems 
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1 parsec

globular cluster NGC 6093
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gas in a box stellar system

molecules, m ~ 10-24 g stars, m ~ 1033 g

 N ~ 1023  N ~ 102-105 (star clusters), 
~105-1012 (galaxies)

short-range forces long-range forces (gravity)

confined in a box confined by self-gravity 

mean free path << system size 
(Knudsen number Kn << 1)

mean free path >> system size 
(Kn >> 1) 
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K  = kinetic energy
W = potential energy
E   = K+W = total energy
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• self-gravitating gas of 
mass M in a rigid 
spherical container of 
radius R

• solutions parametrized 
by density contrast Q = 
ρ(0)/ρ(R)

• heat capacity at constant 
volume C = dE/dT = 
slope

temperature
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Q=3

Q=709

Q=32.1

Q=6.85

Antonov (1962)
Lynden-Bell & Wood (1968)
Thirring (1970)
Katz (1978)

Tuesday, February 24, 15



• place box in contact 
with a heat bath at 
temperature T and 
slowly reduce T

• below Tmin there is no 
equilibrium state

• systems between 
Q=32.1 and Q=709 are 
unstable equilibria 
(entropy is a saddle 
point, not a maximum)

temperature
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Q=709

Q=32.1

Q=6.85

Tmin
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• insulate box and 
suddenly expand its 
radius R

• E is conserved so if E<0 
ER/(GM2) becomes 
more negative

• for R > Rmax there is no 
equilibrium state

• for Q > 709 all 
equilibrium states are 
unstable

temperature

en
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gy

Q=3

Q=709

Q=32.1

Q=6.85

Rmax
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• isolated self-gravitating systems have negative heat capacity
• there is no thermodynamic equilibrium state for self-

gravitating systems unless they are enclosed in a sufficiently 
small box

• there is no “heat death” of the Universe
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• there is no thermodynamic equilibrium state for self-
gravitating systems unless they are enclosed in a sufficiently 
small box 
⇒ stellar systems cannot survive much longer than the 
equipartition or relaxation time due to gravitational 
encounters between stars

• for a spherical system of N stars with crossing time tcross

       
                            trelax ≃  0.1  tcross N/log N
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the solar neighborhood:

tcross ≃  108 yr 
trelax ≃  1013 yr 

10 parsecs
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• stars in the solar neighborhood exhibit “random” velocities of  5-50 km/s in 
addition to common rotational velocity of ~220 km/s

• more massive stars have smaller random velocities
• rms velocity vs mass is roughly consistent with equipartition
• timescale required to reach equipartition due to gravitational encounters 

between stars is ~1013 yr  ⇒ universe must be at least this old

} } Jeans (1928)
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• stars in the Milky Way disk exhibit “random” velocities of  5-50 km/s in 
addition to common rotational velocity of ~220 km/s

• more massive stars had smaller random velocities, consistent with 
equipartition

• timescale required to reach equipartition due to gravitational encounters 
between stars is ~1013 yr  ⇒ universe must be at least this old

• in fact random velocities arise from gravitational interactions with 
interstellar clouds and spiral arms, and more massive stars have smaller 
velocities because they are younger

Jeans (1928)
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giant galaxies:

N ≃  1011

tcross ≃  108 yr 
trelax ≃  1019 yr 
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giant galaxies:

N ≃  1011

tcross ≃  108 yr 
trelax ≃  1019 yr 

•  the distribution of stars is similar, apart from scale, in all galaxies
•  the distribution of stellar velocities is close to Maxwellian
•  how is this achieved if the relaxation time is much longer than the age?

Answer: 
•  large-scale fluctuations in the mean gravitational field during collapse of 

the galaxy drive the distribution of stars towards an (approximately) 
universal form (“violent relaxation”, Lynden-Bell 1967)
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• density profiles of dark-matter halos in 
simulations are well fit over > 3 orders 
of magnitude in radius, > 5 orders of 
magnitude in mass, and a wide variety of 
initial conditions by simple empirical 
formulae

• e.g., Navarro-Frenk-White (NFW) 
profile

Navarro et al. (2004)

• suggests that there is some simple 
physics that determines the density 
profile and other halo properties
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• density profiles of dark-matter halos in 
simulations are well fit over > 3 orders 
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magnitude in mass, and a wide variety of 
initial conditions by simple empirical 
formulae

• e.g., Navarro-Frenk-White (NFW) 
profile

• suggests that there is some simple 
physics that determines the density 
profile and other halo properties

Mandelbaum et al. (2008)
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• density profiles of dark-matter halos in 
simulations are well fit over > 3 orders 
of magnitude in radius, > 5 orders of 
magnitude in mass, and a wide variety of 
initial conditions by simple empirical 
formulae

• e.g., Navarro-Frenk-White (NFW) 
profile

• suggests that there is some simple 
physics that determines the density 
profile and other halo properties

Mandelbaum et al. (2008)
Lynden-Bell (1967)
Binney (1982)
Madsen (1987)
Shu (1987)
Stiavelli & Bertin (1987)
Williams & Hjorth (2010)

Dalal et al. (2010)
Pontzen & Governato (2013)
Beraldo e Silva et al. (2014) 
Alard (2014)
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✗
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The primary feature of entropy in statistical mechanics is that it 
satisfies Boltzmann’s H theorem, i.e.  molecular collisions imply that

Relaxation is a Markov process in phase space defined by the 
probability pji that a particle in cell i transitions to cell j after time 
Δt. If all cells have the same size then time-reversibility implies pji = 
pij. Then 
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Maximum-entropy arguments in violent relaxation do not lead to a 
unique final state.  An initial phase-space distribution f(x,v) can only 
evolve into a final one f′(x,v) if all possible H-functions are smaller 
for f′ than for f.  
A simpler criterion:

Dehnen (2005)

Unfortunately for cold dark matter the left side diverges...

⇒ some physics other than maximum entropy is needed to 
understand violent relaxation 
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 5 

and then later ‘adaptive  optics’  (AO: correcting the wave distortions on-line) became 
available, which have since allowed increasingly precise high resolution near-infrared 
observations with the currently largest (10 m diameter) ground-based telescopes of the 
Galactic Center (and nearby galaxy nuclei).  
 

10”
(0.4 pc)

VLT: H (1.6Pm) - L’(3.8Pm)
VLA: 1.3cm  

 
Figure 2. Near-infrared/radio, color-composite image of the central light years of Galactic 
Center. The blue and green colors represent the 1.6 and 3.8µm broad band near-infrared 
emission, at the diffraction limit (~0.05”) of the 8m Very Large Telescope (VLT) of the 
European Southern Observatory (ESO), and taken with the ‘NACO’ AO-camera and an 
infrared wavefront sensor (adapted from Genzel et al. 2003). Similar work has been 
carried out at the 10 m Keck telescope (Ghez et al. 2003, 2005). The red color image is 
the 1.3cm radio continuum emission taken with the Very Large Array (VLA) of the US 
National Radio Astronomy Observatory (NRAO). The compact red dot in the center of 
the image is the compact, non-thermal radio source SgrA*. Many of the bright blue stars 
are young, massive O/B- and Wolf-Rayet stars that have formed recently. Other bright 
stars are old, giants and asymptotic giant branch stars in the old nuclear star cluster. The 
extended streamers/wisps of 3.8µm emission and radio emission are dusty filaments of 
ionized gas orbiting in the central light years (adapted from Genzel, Eisenhauer & 
Gillessen 2010).  
 
 

Early evidence for the presence of a non-stellar mass concentration of 2-4 million 
times the mass of the Sun (M

�
) came from mid-infrared imaging spectroscopy of the 

12.8µm [NeII] line, which traces emission from ionized gas clouds in the central parsec 
region (Wollman et al. 1977, Lacy et al. 1980, Serabyn & Lacy 1985). However, many 

the nuclear star cluster at 
the Galactic center:

N ≃  105 stars plus a black 
hole of 4 × 106 M⦿
tcross ≃  1 to 104 yr 
trelax ≃  109 yr 

Genzel (2015)
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Bartko et al. (2009) blue = clockwise rotation (61 stars)

red = counter-clockwise rotation (29 stars)

• ~ 100 massive young stars found in the 
central parsec 

• age  6 Myr; implied star-formation rate is so 
high that it must be episodic 

• line-of-sight velocities measured by Doppler 
shift and angular velocities measured by 
astrometry  (five of six phase-space 
coordinates)

• velocity vectors lie close to a plane, implying 
that many of the stars are in a disk or 
perhaps 2 disks (Levin & Beloborodov 
2003)

The stellar disk(s) in the Galactic center

1 pc = 25” 
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• ~100 massive stars in central 
0.5 pc of the Milky Way

• plots show distribution of 
orbit normals

Bartko et al. (2009)

0.15-0.3 pc

0.3-0.5 pc

0.05-0.15 pc

64°

• clockwise disk: 
• warped (best-fit normals in inner and 
outer image differ by 64°) 

• disk is less well-formed at larger radii
• counter-clockwise disk: 

• weaker evidence 
• localized between 0.1 and 0.3 pc

•disks are embedded in a spherical cluster 
of old, fainter stars with M(0.1 pc) ~ 1×105 
M⊙ compared to M・ = 4×106 M⊙

1 pc = 25” 
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Resonant relaxation

•   inside ~0.5 pc gravitational field is dominated 
by the black hole (Mstars < 105 M⊙, M● ~ 4×106 
M⊙) and therefore is nearly spherical 

• on timescales longer than the apsidal 
precession period each stellar orbit can be 
thought of as a disk or annulus 

• each disk exerts a torque on all other disks

• mutual torques can lead to relaxation of orbit 
normals or angular momenta

• energy (semi-major axis) and scalar angular 
momentum (or eccentricity) of each orbit is 
conserved, but orbit normal is not

Rauch & Tremaine (1996)
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Interaction energy between stars i and j is mimjf(ai,aj,ei,ej,cos µij) where µij is 
the angle between the orbit normals 

masses
semi-major axes

eccentricities

Simplify this drastically by assuming equal masses, equal semi-major axes, circular 
orbits, and neglecting all harmonics other than quadrupole

Resulting interaction energy between two stars i and j is just

                                            - C cos2 µij

where µij is the angle between the two orbit normals ni and nj 

Resonant relaxation

Maier-Saupe model

Toy model:
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Resonant 
relaxation

Interaction energy between 
two stars is 

  H = -C cos2 µ

where µ is the angle 
between the two orbit 
normals

• 800 stars 

• each point represents tip 
of orbit normal

• orbit normals initially in 
northern hemisphere are 
yellow, south is red 

animation by B. Kocsis
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animation by B. Kocsis
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•  integrate orbit-averaged equations of 
motion
• yellow = disk stars, blue-red = stars in 

spherical cluster, colored by increasing 
radius 
•  direction and radius of each point 

represents direction of angular-
momentum vector and semi-major axis 
of star
• 8192 stars 
• each point represents tip of orbit 

normal

animation by B. Kocsis
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animation by B. Kocsis
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Statistical mechanics of planetary systems

There are many bad examples of attempts to explain the spacing and other properties 
of planetary orbits from first principles

Nevertheless there are reasons to try again:

• NASA’s Kepler spacecraft has recently provided almost 5000 planet candidates, with orbital 
periods and estimates of masses, inclinations, eccentricities, etc.  Of these 1500 are in multi-
planet systems (N≤6)

• long-term N-body integrations can routinely follow the evolution of hundreds of systems for 
108 years (a few percent of lifetime)

• there are hints of interesting behavior from studies of the stability of the solar system:

- the orbits of all of the planets in the solar system are chaotic, with Liapunov (e-folding) times 
of ~107 yr (Sussman & Wisdom 1988, 1992, Laskar 1989, Hayes 2008)

- the outer solar system is “full” in the sense that no stable orbits remain between Jupiter and 
Neptune (Holman 1997)

- there is a 1% chance that Mercury will be lost from the solar system before the end of the 
Sun’s life in ~ 7 Gyr
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eccentricity of Mercury for 2500 nearby initial conditions

Laskar & Gastineau (2009)
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Statistical mechanics of planetary systems

• a plausible hypothesis is that planetary systems may evolve throughout 
their lifetimes, ejecting unstable planets and gradually settling into more 
and more stable states

• some consequences:
- extends the planet-formation process from Myr to Gyr timescales
- properties of planetary systems are determined in part by simple physics 

(mechanics) rather than complicated physics (dust sticking, MHD instabilities, 
etc.)

- many interstellar planets that should be detectable by gravitational lensing 
surveys
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Statistical mechanics of planetary systems

The range of strong interactions from a planet of mass m orbiting a star of mass M in 
a circular orbit of radius a is the Hill radius

Numerical integrations show that planets of mass m, m′ are stable for N orbital 
periods if

typically k(109) ≃ 9

Generalize to eccentric orbits: pericenter 
of outer orbit and apocenter of inner orbit 
must be separated by at least k Hill radii

Smith & Lissauer (2009)
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Statistical mechanics of planetary systems

Ansatz:  planetary systems fill uniformly the region of phase space allowed by stability 
(~ ergodic hypothesis)
Leads to an N-planet distribution function

For comparison the distribution function for a one-dimensional gas of hard rods of 
length L (Tonks 1936) is 

In both systems the partition function depends only on the filling factor

}

phase-space volume apocenter and pericenter must 
be separated by k Hill radii

step function

Tuesday, February 24, 15



Statistical mechanics of planetary systems

N-planet distribution function

For N>>1 this leads to eccentricity distribution

and distribution of semi-major axis differences
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e.g., N-body simulations of planet growth by Hansen & Murray (2013)

theoretical models use F = 0.3 (derived from planet masses), and mean separation <Δa>

eccentricity (a2-a1-krH)/a
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N-body simulations (Hansen & Murray 2013) Kepler planets (Fabrycky et al. 2014) 

(a2-a1-krH)/a(a2-a1-krH)/a
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